a

TOURISM DEVELOPMENT STRATEGIES: NEW ASPECTS TAILORED UPON THE SCHUMANN RESONANCE

  • Mimoza Serafimova Faculty of Tourism and Business Logistics, Goce Delcev University - Štip, Macedonia
  • Risto Dambov Faculty of Natural Sciences, Goce Delcev University - Štip, Macedonia
Keywords: strategy, tourism, human health

Abstract

From its existence, man seeks to visit places where he feels calm, filled with positive energy and pleasure. Such places exist and represent a long-standing sphere of interest both to individuals who explore and travel on their own, as well as to modern tourism, which focuses on health and development of such places and offers on tourism market through development strategies. In this paper, the strategies that are elaborated are the ones that will associate availability of such locations with the electromagnetic field in their surroundings and the people’s need to enjoy its influence. The main focus is put on the impact on the global magnetic field of the Earth, represented through the Schumann resonance and its potential influence on human health and the creation and application of development strategies that will promote new approaches to this tourism product in Macedonia.

Downloads

Download data is not yet available.

References

Adey, W. R. (1993). Biological effects of electromagnetic fields. Journal of Cell Biochem, Vol. 51, No. 4, 410-416.

Adey, W.R. (1980). Frequency and power windowing in tissue interactions with weak electromagnetic fields. Proc IEEE Vol. 68, No. 1, 119-125.

Adey, W. R. (1990). Joint actions of environmental nonionizing electromagnetic fields and chemical pollution in cancer promotion. Environ Health Perspectives, Vol. 86, No. 2, 297-305.

Balser, M., Wagner, C. A. (1962), Diurnal power variations of the Earth‐ionosphere cavity modes and their relationship to world‐wide thunderstorm activity, J. Geophys. Res., Vol. 67, No. 2, 619-625.

Balser, M., Wagner, C. A. (1962). On frequency variations of the Earth‐ionosphere cavity modes, J. Geophys. Res., Vol. 67, 4081–4083.

Bashar Space-Time Antenna, https://basharspacetimeantenna.

wordpress.com, (11 January 2018).

Bawin, S. M., Adey, W. R. (1976). Sensitivity of calcium binding in cerebral tissue to weak environmental oscillating low frequency electric fields. Proc Nat Acad Sci USA Vol. 73, 1999- 2003.

Bawin, S.M., Gavalas-Medici, R., Adey, W. R. (1973). Effects of modulated very high frequency fields on specific brain rhythms in cats, Brain Res Vol. 58, No. 1, 365-384.

Belyaev, G. G., Schekotov, A. Y. Shvets, A. V. Nickolaenko. A. P. (1999). Schumann resonances observed using Poynting vector spectra, J. Atmos. Sol. Terr. Phys., Vol. 61, No. 2, 751–763.

Сherry, N. J. (2002). Schumann Resonances, a plausible biophysical mechanism for the human health effects of Solar/Geomagnetic Activity, Natural Hazards, Vol 26, No. 3, 279-331.

Cherry, N.J. 2003 - Human intelligence: The brain, an electromagnetic system synchronized by the Schumann Resonance signal, Medical Hypotheses 60 (60), 843-4.

Chrissan, D. A., A. C. Fraser‐Smith. (1996). Seasonal variations of globally measured ELF/VLF radio noise, Radio Sci., Vol. 31, No. 4, 1141–1152.

Dambov, R., Petrevska, B., Spasovski, O., Nikolovski, D. (2011). Economic development of mining in Macedonia. Proceedings from the International Symposium ISTI, ORRE & IRSE, 11-15 September 2011, Zlatibor, Serbia, Vol. l1, No.1, 391-397.

Dambov, R., Trajkovik, S., Karanakova Stefanovska, R. (2017). Measuring the seismic effects of a querry for marble. Proceedings from the 7th Balkan mine Congress, 11-13 October 2017, Prijedor, Bosnia and Herzegovina. Vol.1., No 1, 147-154.

Dambov, R., Trajkovik, S., Karanakova Stefanovska, R. (2017). Measuring the seismic effects of a quarry for marble. 7th Balkan mine Congress, Prijedor, Vol.1., pp. 147-154, 11-13 October 2017, Bosnia and Herzegovina.

Edgell, D. L. et al. 2008. Tourism Policy and Planning: Yesterday, Today and Tomorrow, Elsevier Inc. European Commission. Eurostat, Statistics Database, http://www.ec.europa.eu/eurostat (12 December 2009).

Eluxe Magazine, https://eluxemagazine.com, (4 February 2019).

Fraser‐Smith, A. C., P. R. McGill, A. Bernardi, R. A. Helliwell, M. E. Ladd. (1991). Global measurements of the low frequency radio noise, in Environmental and Space Electromagnetics, edited by H. Kikuchi, 191–200, Springer, New York.

Füllekrug, M., A. C. Fraser‐Smith. (1997). Global lightning and climate variability inferred from ELF magnetic field observations, Geophys. Res. Lett., Vol. 24, No. 2, 2411–2414.

Gendrin, R., R. Stefan. (1962). Effet de l'explosion thermonucléaire a trés hasut altitude de Julliet 1962 sur la résonance de la cavité terre‐ionopshere, résultats expérimenteaux, C. R. Hebd. Seances Acad. Sci., Vol. 255, No. 4, 2273–2275.

Gunn, C. A. (1993). Tourism Planning – Basics, Concepts, Cases, Third Edition. Clare A. Gunn. Taylor & Francis, 1101 Vermont Avenue, N.W., Suite 200, Washington, D.C.

Hall, M. C. (2005). The Future of Tourism Research, in B. Ritchie et al. (Ed.) Tourism Research Methods: Integrating Theory with Practice, (pp. 221-231), CABI Publishing.

Hans Volland. (1995). Handbook of Atmospheric Electrodynamics, vol. I", CRC Press. Chapter 11 is entirely on Schumann Resonances and is written by Davis Campbell at the Geophysical Institute, University of Alaska, Fairbanks AK, 99775.

HeartMath Institute. (2017). Schumann Resonance Response Graph [Online] https://www.heartmath.org/research/global-coherence/gcms-live-data/ (27 June 2017).

Heckman, S. J., E. Williams, B. Boldi. (1998). Total global lightning inferred from Schumann resonance measurements, J. Geophys. Res., Vol. 103, No. 31,775–780.

Holzer, R. E. (1958). World thunderstorm activity an extremely low frequency spherics, in Recent Advances in Atmospheric Electricity, edited by L. G. Smith, pp. 559–607, Elsevier, New York.

Jones, D. L. (1999). ELF sferics and lightning effects on the middle and upper atmosphere, Modern Radio Science 1999, edited by M. A. Stuchly, pp. 171–189, Oxford Univ. Press, New York.

Kohl & Partner (2016). National Tourism Strategy 2016 – 2020 Macedonia, Executor: Kohl & Partner DOO Skopje, Macedonia.

Lazebny, B. V., A. P. Nickolaenko, V. E. Paznukhov, L. M. Rabinowicz, V. F. Shulga. (1987). Evaluation of global lightning activity parameters from the records of the coherence measure (in Russian), Geomagn. Aeron., Vol. 27, 516–518.

Lewicki, D. R., Schaut, G. H., Persinger, M.A. (1987). Geophysical variables and behavior: XLIV. Days of subjective precognitive experiences and the days before the actual events display correlated geomagnetic activity. Perceptual and Motor Skills, Vol. 65, No. 1, 173-174.

MacGorman, D. R., Rust, W. D. (1998). The electrical nature of storms. New York: Oxford University Press, USA.

Malmivuo, J. Plonsey, R. (1995) Bioelectromagnetism: Principles and Applications of Bioelectric and Biomagnetic Fields. Oxford University Press, Oxford.

Matthews, S. Universal life tools, https://www.universallifetools.com, (21 November 2018).

Melnikov, A., C. Price, G. Sátori, M. Füllekrug. (2004). Influence of the solar terminator passages on Schumann resonance parameters, J. Atmos. Sol. Terr. Phys., Vol. 66, No. 4, 1187–1194.

Montiel, I., Bardasano, J. L., Ramos, J. L. (2005). Biophysical Device For The Treatment Of Neurodegenerative Diseases. In Méndez-Vilas, A. Recent Advances in Multidisciplinary Applied Physics. The First International Meeting on Applied Physics, Badajoz, Spain. 63–69.

Nail, C. (2001). Schumann Resonances, a plausible biophysical mechanism for the human health effects of Solar/Geomagnetic Activity, Natural Hazards Journal, Vol. 26, No 3, 279-331.

NASA/GSFC (2012). Shouman's Resonant Animation, http://svs.gsfc.nasa.gov//vis/a010000/a010800/a010891/, (27 Јune 2017).

Nickolaenko, A. P., Rabinowicz. L. M. (1995). Study of the annual changes of global lightning distribution and frequency variations of the first Schumann resonance mode, J. Atmos. Terr. Phys., Vol. 57, No. 3, 1345–1348.

Nickolaenko, A. P., Hayakawa, M. Hobara, Y. (1996). Temporal variations of the global lightning activity deduced from the Schumann resonance data, J. Atmos. Terr. Phys., Vol. 58, No. 4, 1699–1709.

Nickolaenko, A. P., S`atori, G., Ziegler, V., Rabinowicz, L. M., Kudintseva, I. G. (1998). Parameters of global thunderstorm activity de-duced from the long-term Schumann resonance records, J. At-mos. Solar-Terr. Phys., Vol. 60, No 3, 387–399.

Nickolaenko, A. P., Hayakawa, M., Hobara, Y. (1999). Long–term pe-riodic variations in the global lightning activity deduced from theSchumann resonance monitoring, J. Geophys. Res., Vol 104, No 585–591.

Nickolaenko, A. P., Hayakawa, M. (2002). Natural ELF Pulses in the Time Domain: Series with Accelerated Convergence, IEEJ Transactions on Fundamentals and Materials., Vol. 124, No 12, 1210-1215.

Objekti, https://www.obekti.bg/misterii/neshcho-stranno-sesluchvasm

agnitnoto-pole-na-zemyata-i-nikoy-ne-znae-zashcho, (1 November 2018).

Ogawa, T., Tanaka, Y. Fraser‐Smith, A. C. Gendrin. R. (1967). Worldwide simultaneity of a Q‐burst in the Schumann resonance frequency range, J. Geomagn. Geoelectr., Vol. 19, No. 1, 377–384.

Ogawa, T., Tanaka, Y. Miura, T. Yasuhara, M. (1966). Observations of natural ELF electromagnetic noises by using the ball antennas, J. Geomagn. Geoelectr., Vol. 18, No. 1, 443–454.

Petrevska, B. (2011). Tourism in the Global Development Strategy of Macedonia: Economic Perspectives, UTMS Journal of Economics, Vol. 2, No. 1, 101-108.

Polk, C. (1969). Relation of ELF noise and Schumann resonances to thunderstorm activity, In: Planetary Electrodynamics, vol. 2, edited by S. C. Coronoti, and J. Hughes, pp. 55–83, Gordon and Breach, New York.

Price, C. & A. Melnikov. (2004). Diurnal, seasonal and inter‐annual variations in the Schumann resonance parameters, J. Atmos. Sol. Terr. Phys., Vol. 66, No. 4, 1179–1185.

Rusov, V. D. (2012). Can Resonant Oscillations of the Earth Ionosphere Influence the Human Brain Biorhythm, Department of Theoretical and Experimental Nuclear Physics, Odessa National Polytechnic University, Ukraine.

Rycroft, M. J. (1965). Resonances of the Earth‐ionosphere cavity observed at Cambridge, England, J. Res. Natl. Bur. Stand., Sect. D, Vol. 69, No. 4, 1071–1081.

Sao, K., Yamashita, M. Tanahashi, S. (1971). Day to day variations of Schumann resonance frequency and occurrence of Pc1 in view of solar activity, J. Geomagn. Geoelectr., Vol. 23, No. 2, 411–415.

Sao, K., M. Yamashita, S. Tanahashi, H. Jindoh, and K. Ohta, 1973: Experimental investigations of Schumann resonance frequencies. J. Atmos. Terr. Phys., No 35, 2047-2053.

Sátori, G. (1996). Monitoring Schumann resonances—II. Daily and seasonal frequency variations, J. Atmos. Terr. Phys., Vol. 58, No. 5, 1483–1488.

Sátori, G., Zieger, B. (1996). Spectral characteristics of Schumann resonances observed in Central Europe, Journal of Geophysical Research Atmospheres., Vol. 1012, No 23, 29663-29670.

Sátori, G., Zieger, B. (1999). El Niño related meridional oscillation of global lightning activity, Geophys. Res. Lett., Vol. 26, No. 3, 1365–1368.

Sátori, G., Williams, E. R. Zieger, B. Boldi, R. Heckman, S. Rothkin, K. (1999). Comparison of long‐term Schumann resonance records in Europe and North America, 11th International Conference on Atmospheric Electricity, Global Hydrol. and Clim. Cent., Guntersville, Ala.

Schumann, W. O., König, H. L. (1954). Uber die beobachtung von atmospherics bei geringsten frequenzen. Naturwissenschaften, Vol. 41, Issue 8, 183-184.

Schumann, W.O. (1952). Über de strahlundslosen Eigenschwingungen einer leitenden Kugel, die von einer Luftschicht und einer Ionospharenhulle umgeben ist. Naturwissenschaften, Zeitschrift für Naturforschung A, Volume 7, Issue 2, 149-154.

Sentman, D. D., Fraser, B. J. (1991). Simultaneous observations of Schumann resonances in California and Australia: Evidence for intensity modulation by the local height of D region, J. Geophys. Res., Vol. 96, No. 15, 973–984.

Serafimova, M. (2017). Impact of the business environment on the conditions for starting business in Republic of Macedonia. In: First international scientific conference "Challenges of tourism and business logistics in th 21st century, ISCTBL, 2017, 24-25 Oct 2017, Gevgelija, Mecedonia. 313-319.

Serafimova, M., Petrevska, B. (2015). Entrepreneurial advancement of women in tourism: the case of Macedonia. In: Second international Scientific Conference: Social change in the Global World, 3-5 Sept 2015, Stip, Macedonia, 863-875.

Space Lovers Club, https://subscribe.ru/group/klub-lyubitelej-kosmosa/12569993/, (12 November 2018).

Williams, E. R. (1992). The Schumann resonance: A global tropical thermometer, Science, Vol. 256, Issue 5060, 1184–1187.

What is Shuman resonance and why it is important for your health?, https://www.drskinhealth.com/blog/schumann-resonance, (21 November 2018).

Published
2019-07-03
How to Cite
Serafimova, M., & Dambov, R. (2019). TOURISM DEVELOPMENT STRATEGIES: NEW ASPECTS TAILORED UPON THE SCHUMANN RESONANCE. Tourism International Scientific Conference Vrnjačka Banja - TISC, 4(2), 723-741. Retrieved from http://www.tisc.rs/proceedings/index.php/hitmc/article/view/324